

RADON: Open Source DevOps
for Serverless Applications

Embracing microservices and serverless technology with the
open source RADON framework

RADON Consortium

https://radon-h2020.eu/

https://radon-h2020.eu/

Page 2 of 65

RADON: OPEN SOURCE DEVOPS FOR SERVERLESS APPLICATIONS

@Copyright 2021 RADON Consortium

E-mail: info@radon-h2020.eu

Edition: 1.0.0 (30 June 2021)

Page 3 of 65

Editor

Giuliano Casale, Imperial College London, UK

Author List

Matija Cankar, XLAB, SI

Chinmaya Dehury, University of Tartu, EE

Stefania D’Agostini, Engineering Ingegneria Informatica, IT

Stefano Dalla Palma, JADS, NL

Dario Di Nucci, JADS, NL

Georgios Giotis, ATC, GR

André van Hoorn, University of Stuttgart, DE

Pelle Jakovits, University of Tartu, EE

Mark Law, Imperial College London, UK

Anže Luzar, XLAB, SI

Zifeng Niu, Imperial College London, UK

Domenico Presenza, Engineering Ingegneria Informatica, IT

Anestis Siridopoulos, ATC, GR

Alexandros Spartalis, Eficode, NO

Sašo Stanovnik, XLAB, SI

Damian Tamburri, JADS, NL

Giorgos Triantafyllou, ATC, GR

Michael Wurster, University of Stuttgart, DE

Lulai Zhu, Imperial College London, UK

Page 4 of 65

Table of contents

1. Introduction 6

1.1 Benefits of serverless computing 6

1.2 Challenges posed by serverless computing 8

1.3 Why RADON? 9

1.4 An overview of the RADON framework 10

1.5 Structure of the book 14

2. RADON Workflow-driven Methodology 15

2.1 The RADON lifecycle model 15

2.2 RADON Workflows 18

3. Tools Overview 21

3.1 RADON Integrated Development Environment 21

3.2 Graphical Modeling Tool 22

3.3 Verification Tool 25

3.4 Decomposition tool 27

3.5 Defect Prediction Tool 31

3.6 Continuous Testing Tool 34

3.7 xOpera SaaS Orchestrator 36

3.8 Template Library 40

3.9 Monitoring Tool 42

3.10 Function Hub 45

3.11 CI/CD Plugin 48

3.12 Data Pipeline Plugin 51

4. Industrial Use Cases 54

4.1 Travel Technology 54

4.2 Assisted Living 57

4.3 Artifact Management 60

5. Conclusion 63

References 63

Page 5 of 65

Glossary

CDL Constraint Definition Language

CI/CD Continuous Integration/Continuous Delivery

CTT Continuous Testing Tool

DPT Defect Prediction Tool

DT Decomposition Tool

FaaS Function as a Service

GMT Graphical Modeling Tool

IaC Infrastructure as Code

VT Verification Tool

WP Work Package

Page 6 of 65

1. Introduction

Emerging serverless computing technologies, such as function-as-a-service (FaaS) offerings,

have emerged in recent years to enable developers to virtualize the internal logic of an

application, simplifying management of cloud-native applications and allowing cost savings

through billing and scaling at the level of individual function calls. Therefore, serverless

computing is rapidly shifting the attention of software vendors to developing complex

industrial cloud applications that can use this new technology and the underpinning platforms

optimally.

This handbook addresses this problem by presenting RADON, a DevOps framework to

create and manage microservices-based applications that can optimally exploit serverless

computing technologies. Applications built with RADON include fine-grained and

independently deployable microservices that can efficiently exploit FaaS and container

technologies. The vision of the RADON platform is to broaden the adoption of serverless

computing technologies with a methodology that strives to tackle software complexity, avoid

FaaS lock-in, harmonize the abstraction and actuation of action-trigger rules handled with

serverless functions, and optimize decomposition and reuse through model-based

development and orchestration for FaaS.

This book aims to present the benefits and challenges for software engineers and their

managers that arise from serverless technologies and explain how these, in practice, can be

tackled using the methods and tools developed within RADON. The RADON framework is

illustrated through the handbook on concrete examples and the lessons learned in its

application to several industrial use cases. This introductory chapter begins this journey by

presenting the broader benefits and challenges posed by serverless computing for

companies and software developers.

1.1 Benefits of serverless computing

In the last decade, most organizations have embraced cloud technologies, greatly reducing

operation costs through infrastructure scaling and improving service delivery agility through

novel engineering practices (e.g., DevOps). However, the first generation of cloud solutions

has still seen engineers developing applications designed to run as cloud-based servers, a

situation that does not eliminate server management and maintenance costs.

Instead, Serverless computing offers a new delivery model for enterprise software where

SMEs and large companies alike can run business logic in the cloud by relying on cheap,

Page 7 of 65

provider-managed servers. Business logic is packaged in simple functions, whose execution

is entirely outsourced to the provider for execution, relieving companies from taking care of

performance, scaling, and availability issues on their own.

Some of the most significant business benefits of adopting serverless in place (or on top) of

existing cloud offerings such as IaaS or PaaS include:

● Cost reduction. Serverless functions can be started and stopped by the provider upon

demand, reducing to a minimum the overhead for the companies, such as expenses

arising from periods of server inactivity while waiting for sensor data.

● Self-managed scalability. Scaling complex enterprise applications can involve tens or

even hundreds of interacting nodes. Serverless exposes minimum configuration,

installation, and operations knobs, freeing companies from the need to provision

teams of operations specialists to manage such large-scale applications.

● Shorter time-to-market. Serverless is developer-centric, promoting the definition of

large collections of reusable APIs that can be easily reused across products, allowing

to prototype new functions in a matter of hours.

There are already many business stories that indicate success in Serverless adoption, and

that can motivate an organization to look at the RADON technology stack with interest. Some

sources indicate that, at this time, up to 50% of Amazon AWS users have adopted Lambda1.

According to market analysis firms such as Gartner2, typical business case requirements that

motivate the adoption of serverless include:

● Application reactive behaviour in response to user or environment generated events.

● Sporadic execution, long periods of idleness.

● Applications that undergo periods with large uncertainties on the scaling

requirements (e.g., promotional campaigns to attract more customers to a service).

● Short-running workloads with limited resource footprint

● Highly-parallel stateless execution

● Light-weight integration method between services with the ability to produce and

pass data

Many such examples arise in practical, day-to-day, technical operations across different

vertical domains. Technical use cases of serverless computing span across multiple domains

1
 https://www.bmc.com/blogs/state-of-serverless/

2
 Gartner, A CIO’s Guide to Serverless Computing, G00465766, 28 April 2020.

https://www.bmc.com/blogs/state-of-serverless/

Page 8 of 65

and management issues. Some representative ones include: Asynchronous processing,

Real-time data analytics, IoT edge orchestration, Account creation, Extract, transform, load

data (ETL), Test automation, among many others. This book will overview examples arising

from healthcare, travel technology, and managed DevOps domains.

Overall, the above benefits justify the considerable interest in serverless computing

technologies that have emerged in recent years. At the same time, to see the whole picture,

it is essential to complete this introduction by looking at open technical, research, and

business-driven problems surrounding this emerging technology.

1.2 Challenges posed by serverless computing

Despite the above business case for adopting serverless, several business shortcomings

remain for organizations that want to adopt serverless technology. These challenges still

represent a risk and limiting factor for serverless FaaS adoption. The following major

shortcomings of serverless computing may be identified.

Code and data lock-in. Developers and organizations have different preferences and

constraints when storing data and choosing the serverless platform to run functions in the

cloud. Investing in a single serverless stack (e.g., Azure Functions) can restrict the added-

value services that companies can offer to their customers and lose business opportunities

if a new customer uses an incompatible technology stack. However, maintaining products

that use multiple clouds, if not done automatically, can duplicate efforts and increase

maintenance costs, decreasing the cost-benefits of adopting serverless.

Early-stage adoption issues. FaaS is a game-changer in the software industry, shifting the

attention of many IT-driven organizations to adopt this technology. However, there is an

inherent lag in adopting new technologies in less technology-driven organizations due to

skill shortage and the necessity to build internal proof-of-concept prototypes to persuade

management to invest in more advanced IT technologies. In this lies a problem: adopting a

new technology stack inherently creates a skill gap in organizations and requirements to

define new best practices. There is a shortage in the market of serverless expertise due to

the recency of the technology, which means that initial attempts at defining proof-of-concept

solutions may be misguided and result in problems or lower-than-expected performance.

Adopting serverless without appropriate tools can result in losing time, effort, and a

misperception of the issues and weaknesses. Integrating a DevOps culture can also be an

important factor in reducing the time to adopt this technology in the organization.

Page 9 of 65

Portability across customer use cases. Applying serverless computing across customer use

cases can result in situations where the technology assumptions taken upon creating the

product are far from the customer reality, requiring significant reengineering or customization

to implement the solution in production. This risk can be mitigated by increasing the level of

abstraction in the product design.

Need for architecture reengineering. Serverless FaaS requires packaging an application

into functions, requiring a considerable time to decompose a monolith or service-oriented

system into a finer grained decomposed architecture. Besides rewriting portions of the code,

one issue is the change in design pattern required to adopt serverless due to its innovative

event-driven nature without servers that differs from the prior art. For example, the stateless

pattern of functions is not suitable for all workloads, and therefore identifying where and

when to apply serverless requires considerable conceptual effort in the adopters.

1.3 Why RADON?

To tackle the challenges described in the previous section, RADON proposes a DevOps-

oriented framework that enables stakeholders in the software development industry to

create and manage applications using microservices and serverless computing technologies.

The goal set for the RADON methodology is to tackle complexity, harmonize the abstraction

and actuation of action-trigger rules, avoid Function-as-a-Service (FaaS) lock-in, and optimize

decomposition and reuse through model-based FaaS-enabled development and

orchestration.

As such, the RADON key business value proposition is to provide a DevOps framework to

rapidly develop novel FaaS-based software products without incurring code and data lock-

in.

The RADON framework is a holistic software environment built upon the open-source Eclipse

Che environment. The framework leverages the DevOps nature of the Che environment to

supply tools as dynamically retrievable plug-ins and containers that are instantiated at

runtime in the end-user environment upon creation of a new Integrated Development

Environment (IDE) workspace. In other words, the RADON solution is modular and easy to

maintain and evolve because each tool in the IDE is dynamically retrieved and configured

with the IDE itself pulling it from a remote Docker or Github repository. On the one hand, this

integration approach simplifies the continuous evolution of the framework. On the other

hand, this delivery style for an integrated framework is considerably more advanced than the

canonical style of extending a pre-DevOps environment such as the classic Eclipse IDE.

Page 10 of 65

RADON couples the standard Eclipse Che IDE with a new range of design and analysis tools.

In particular, RADON supports the graphical modeling of applications, combining FaaS,

microservices, and data pipelines through models that generalize the TOSCA baseline.

TOSCA, an acronym for Topology and Orchestration Specification for Cloud Applications, is

a standard language proposed by the OASIS standardization consortium to describe a

topology of cloud-based services (and microservices), together with their components,

relationships, and related lifecycle management functions. Within RADON, an extended

version of TOSCA has been supplied, which provides for the first time support for FaaS across

multiple provides such as AWS, Azure, and Google clouds. We shall refer to this extended

language as RADON TOSCA.

The project introduces on top of RADON TOSCA a constraint definition language (CDL) that

allows to define requirements in the form of constraints and desired properties and employs

tools for assuring the quality of development with respect to the fulfillment of these

requirements and the associated service level agreements, using specialized supporting

tools. At runtime, the project supports the orchestration of the application deployment and

delivery processes. In this direction, RADON provides a library of reusable and actionable

templates and plugins for serverless FaaS and data pipelines. At the same time, it employs

monitoring mechanisms to collect evidence towards measuring conformance to the controls

and constraints already defined at design time.

This handbook aims to explain these developments in detail, offering a journey to the reader

and adopters within a modern research-oriented solution for software engineering of

serverless applications.

1.4 An overview of the RADON framework

The RADON framework provides a set of components that realize a set of tools, modules,

and services covering both the design and runtime phases of microservices and serverless-

oriented application development and deployment. The Architecture Diagram in Figure 1.1

illustrates the broader technical architecture of the framework.

Page 11 of 65

Figure 1.1 - RADON Architecture Diagram

The Architecture Diagram depicts the connections among the RADON components. The

design-time components interact with each other and with the runtime components to

design, prototype, deploy and test applications built on serverless FaaS. The RADON

Workflows define such interaction(s) in the context of the RADON methodology, which are

described later in this handbook.

In this context, a particular role is played by the RADON IDE. This component, as mentioned,

is based on Eclipse Che and provides a multi-user development environment to access the

RADON artifacts. Indeed, as depicted in the architecture diagram, the RADON IDE interacts

also with the Template Library. This is done to access the reusable base types, abstractions,

and TOSCA extensions and make them available to the RADON tools that require them to

model a RADON application. Moreover, the RADON IDE acts as the front-end of the RADON

Page 12 of 65

methodology by enabling users to invoke RADON tools supporting both the design and

runtime phases of application development.

The RADON DevOps methodology, described in a dedicated chapter, consolidates the user

workflow for using RADON tools and the DevOps paradigm for software delivery and

evolution. In the context of a DevOps lifecycle, we have defined several workflows as

abstractions to organize and present the possible interactions of the different tools within the

RADON framework and with the identified actors. DevOps actors, as described above, are

fundamental to reason about the existing development and operations roles and re-assign

them for the continuous delivery of software in the context of RADON.

Furthermore, the defined workflows help understand and further refine the application

development lifecycle with the RADON framework, considered an iterative process involving

Design, Development (Deployment), and Runtime.

The table shown in the next page, Table 1.2, provides the role of each tool in these two

phases, together with a brief description of their intended purpose.

Page 13 of 65

Table 1.2 - RADON Tools

Name Description Phase

RADON IDE A web-based multi-user development environment that integrates
the RADON tools.

Design time

Graphical Modeling
Tool

A web-based tool to graphically model TOSCA applications. Design time

Verification Tool A tool for verifying whether a RADON model conforms to a
specification expressed in the Constraint Definition Language.

Design time

Decomposition Tool A tool for architecture decomposition, deployment optimization,
and accuracy enhancement.

Design time

Runtime

Defect Prediction Tool A tool that focuses on IaC correctness and smells detection. Design time

Continuous Testing
Tool

A tool for continuous design, evolution, deployment, and execution
of tests.

Design time

Runtime

xOpera SaaS A tool for processing and executing the RADON TOSCA service
templates packaged in a compressed archive called Cloud Service
Archive (CSAR).

Runtime

Template Library A shared repository for templates, blueprints, and modules
required for the application deployment.

Design Time

Runtime

Monitoring System A back-end service-based system to collect evidence from the
runtime environment to support quality assurance.

Runtime

Function Hub A repository to store versioned plug-and-play FaaS packages. Design time

CI/CD Plugin A plugin to enable CI/CD based on predefined RADON tool pipeline
templates.

Runtime

Data Pipeline Plugin A plugin that ensures the functioning of data-pipeline-based CSAR
files before they are deployed.

Runtime

In the next chapters, we will see a description of the RADON tools and the main workflows
they operate in.

Page 14 of 65

1.5 Structure of the book

The structure of the book chapters is as follows:

● Chapter 2 offers a methodological overview of RADON explaining the stakeholders

of the methodology and the workflow for their coordination and simutlaneous use of

the RADON framework.

● Chapter 3 introduces one by one the RADON tools describing the problem they solve

and their benefits and aims. In most cases, these are coupled with concrete examples.

● Chapter 4 discusses the applicability of RADON to 3 industrial use cases in the

domains of travel technology, healthcare and managed DevOps.

The above chapters and then followed by conclusions that point the reader to additional web

resources for the reader.

Page 15 of 65

2. RADON Workflow-driven Methodology

In this chapter, we begin our journey by looking at the holistic methodology that RADON

proposes to develop serverless based applications. The chapter aims at distilling in compact

form the lifecycle model used in RADON, namely, an abstract representation of the high-level

phases and their logical interconnections. Afterwards, these high-level phases are

decomposed into methodological sub-units, also called fragments, implemented as RADON

tools. The usage of each of such tools is further materialized as one or multiple lower-level

workflows for designing, developing, and operating RADON applications.

2.1 The RADON lifecycle model

RADON intends to deliver a DevOps-inspired methodology. On that basis, RADON proposes

to identify a few reference DevOps actors. A RADON actor defines a role -- not a single

human or software -- therefore the same person can potentially act as multiple RADON actors

and the same role could be split across multiple actors. The RADON actors are as follows:

● Software Designer: this actor is responsible for the application architecture and data

lifecycle design.

● Software Developer (Dev): responsible for business logic coding and testing.

● Operations Engineer (Ops): responsible for delivery on the infrastructure and

infrastructure testing.

● QoS Engineer: responsibility for ensuring performance/reliability/security/privacy/access

control properties of the application,

● Release Manager: team leader that authorizes major changes and their release to

production.

The lifecycle model defines the sequencing of method actions and associated RADON

workflows in an application-organization-and-technology-agnostic fashion.

The model is developed applying "situational method engineering".3 This tactic allows us to

cater to community-, organization-, and project-specific requirements and constraints. It is

not geared toward one single base method but rather at synthesizing several "method parts"

(sometimes referred to as method chunks or fragments) in an application context-specific

3
 Details about the process can be found in D3.1

Page 16 of 65

manner. The key fabric of these method chunks/fragments constitutes the RADON workflows

designed by RADON industry partners, grounded on the body of literature.

In contrast to other software lifecycle models, the feedback does not take place only toward

the end of a cycle but takes place virtually constantly, which means that the actors involved

need intense communication and coordination amongst themselves. The RADON Monitoring

Tool plays a center-court role in such coordination. For example, it provides feedback on

resource consumption (CPU/memory usage), notifying RADON developers, integrators, and

testers to act upon such information with the actual build, decomposition, and verification of

the code. Furthermore, the RADON lifecycle model neither prescribes a specific order in

which the cycles may be traversed nor demands all lifecycle phases to be activated.

It is also important to understand that the RADON lifecycle methodology does not herald the

"one-size-fits-all" mentality. This equally applies to staff involved in executing projects

adopting the RADON methodology. Typically, a single RADON "DevOps'' team is thus

composed of a mixture of staff involved in the entire end-to-end application lifecycle, from

development and test to deployment to operations. This implies that application design,

quality assurance and security roles are more tightly integrated with development,

monitoring, testing and operations roles throughout the application lifecycle. In addition, it

requires staff to develop a mixture of skills not restricted to a single traditional function, such

as would be the case in more conventional software development lifecycle models. Some

(larger) organizations applying the RADON methodology might adopt all roles, done by

different staff members, whilst other (smaller) organizations might allocate all these

responsibilities to one single staff member.

The RADON lifecycle methodology, as depicted below, has been defined at the macro-level

pertaining to the global lifecycle model and their interrelationships, the meso-level referring

to organization-specific instantions, and the micro-level denoting specific serverless

application development projects. Organization specific instantiations of the RADON

methodology take into account specific resources and domain-specific constraints imposed

by the organization, including its size (SME- or large IT departments), maturity (experience

level of DevOps), existing IT landscape (legacy system environment), and toolbase and pre-

existing IT development and maintenance infrastructure. The project-specific instantiations

are typically developed ad-hoc, taking into consideration situational characteristics like

application size, complexity and type (e.g., event-driven IoT systems, or production

administrative systems), dependencies on other applications, resource capabilities and

capacity, and timing and scope.

Page 17 of 65

Figure 2.1 - RADON methodological workflow

The entry point of the RADON workflow is the application development that allows users to

define FaaS-based applications using a graphical modeling tool, save and reuse previously

created templates, and deploy the obtained results.

Starting from this entry point, there are at least six critical phases in a standard RADON-

supported lifecycle model, namely, from abstract-level and design time to code-level and run-

time:

● The verification workflow allows users to define several constraints and verify

whether the serverless application complies with such constraints with the final goal

of refactoring it to comply with requirements.

● The decomposition workflow allows users to decompose a monolithic application

from both an architectural and a deployment perspective.

● The defect prediction workflow allows users to improve the quality of the codebase

by visualizing code metrics, localizing defects, and detecting code smells.

Page 18 of 65

● The continuous testing workflow allows users to automate the testing activities by

continuously generating and testing the applications.

● The monitoring workflow allows users to real-time monitor their applications at

runtime.

● The CI/CD workflow allows users to integrate RADON within their CI/CD platform

configuration.

Once a serverless application enters the RADON lifecycle model, it is organized as a

continuous loop. This process comprises several phases, from code development to its

continuous integration and delivery. It exploits a series of feedback loops to incorporate new

measured insights (e.g., about quality attributes such as performance and security). The cycle

is started anew until the application is discarded for whatever reason.

2.2 RADON Workflows

The RADON methodology adapts to the purpose of the user through the exploitation of the

situational method engineering approach.

RADON supports and advocates a comprehensive approach to Microservices and FaaS-

based application development. However, it also acknowledges that some users are not

developing applications from scratch using the complete RADON methodology, and could

be only looking for the mere use of discrete RADON workflows, e.g., rapid prototyping

functionality or defect prediction facilities upon existing applications.

The RADON methodology is composed of the six key RADON workflows and associated

tools needed to conduct a specific (serverless) application development project. The RADON

workflows methods impose structure on specific software development tasks with the

goal of making the activity (more) disciplined, systematic, repeatable and predictable. The

RADON tools have thus been designed for the explicit support of the RADON workflows,

maximizing the level of automated support.

In the following, we consider using the RADON tools, which the next figure depicts in an

integrated way, in the context of six different workflows and the methodology entry-point that

illustrate alternative ways to exploit the RADON framework.

Page 19 of 65

Figure 2.2 - RADON integrated tools and related workflows

The table in the next page provides an overview of RADON workflows with involved actors

and tools.4

4
 Full details concerning each workflow are provided in D3.1

Page 20 of 65

Table 2.3 - RADON Roles

RADON
workflows

Description Roles5 Tools

Entry-point:
Application
Development

It allows users to define FaaS-based
applications using a graphical modeling
tool, save and reuse previously created
templates, and deploy the obtained
results.

Software Developer
Release Manager

IDE
Graphical Modeling Tool
Data Pipeline Plugin
Function Hub
Template Library
Orchestrator

Verification It allows users to define several
constraints and verify whether the
serverless application complies with
such constraints with the final goal of
refactoring it to comply with
requirements.

Software Designer
QoS Engineer

IDE
Verification Tool
Graphical Modeling Tool

Decompositio

n

It allows users to decompose a
monolithic application from both an
architectural and a deployment
perspective.

Software Designer

Ops Engineer

QoS Engineer

IDE
Decomposition Tool
Graphical Modeling Tool
Monitoring Tool

Defect

Prediction

It allows users to improve the quality of
the codebase by visualizing code
metrics, localizing defects, and detecting
code smells.

Software Developer

Ops Engineer

IDE
Defect Prediction Tool

Continuous

Testing

It allows users to automate the testing
activities by continuously generating and
testing the applications.

Software Developer

Release Manager

QoS Engineer

IDE
Continuous Testing Tool
Orchestrator
Monitoring Tool

Monitoring It allows users to real-time monitor their
applications at runtime.

Ops Engineer

QoS Engineer

IDE
Monitoring Tool
Graphical Modeling Tool
Orchestrator

CI/CD It allows users to integrate RADON within
their CI/CD platform configuration.

Ops Engineer

Release Manager

IDE
CI/CD Plugin

5
 Roles were identified in D2.1

Page 21 of 65

3. Tools Overview

This section summarizes the RADON tools we have introduced earlier in the handbook. Some

of the tools are design-focused, while some are runtime-oriented. Finally, some have both

design and runtime aspects.

3.1 RADON Integrated Development Environment

Overview. The RADON Integrated Development Environment (IDE) provides a development

environment for multi-user usage. Based on the Eclipse Che technology, the RADON IDE

supports standard (web-based) development activities (such as support for different

programming languages, debugging functionalities, source code editors). Furthermore, it

provides a front-end to interact with the RADON framework and its tools and access to the shared

spaces of the RADON artifacts (i.e., RADON models).

High-level architecture. The Eclipse Che development environment has been customized to

realize a new RADON Stack (i.e., a runtime configuration) defining a RADON workspace. A

RADON workspace is characterized by a set of plugins, projects, and Kubernetes containers

implemented to customize the development environment and integrate the RADON tools

according to the project needs.

The RADON IDE comprises several Eclipse Che plugins that integrate the RADON tools.

These plugins add capabilities to the Eclipse Che GUI and permit interaction with the RADON

tools. Moreover, some Kubernetes components have been defined in the RADON workspace

to integrate services of some RADON tools (i.e., GMT, VT, CTT) in the IDE "backend".

Finally, the RADON workplace is also characterized by a project (named “radon-particles”)

that clones in the RADON workspace the TOSCA modeling entities from the RADON Particles

GitHub repository. A detailed description of the RADON IDE is provided in the deliverable

D2.7.

Page 22 of 65

3.2 Graphical Modeling Tool

Overview. The Graphical Modeling Tool (GMT) is a web-based environment to graphically

model TOSCA topologies. The environment includes a type and template management

component to offer creation and modification of all elements defined in the TOSCA

specification. All information is stored in a repository, which allows importing and exporting

using the TOSCA packaging format.

Business Purpose. GMT provides an usability layer on top to maintain your TOSCA files in a

graphical and intuitive user interface. It provides a graphical web-editor with which you can

create and maintain all TOSCA entities. Thereby, GMT stores all TOSCA entities in a defined

folder structure that fosters the reusability of TOSCA types, while validating and storing all

TOSCA entities in the syntax defined by the standard. Further, the graph-based

representation of TOSCA topologies in GMT provides a quick overview of the entire system

and offers a communication basis for the cooperation with other parties. It therefore offers a

quicker introduction to modeling with TOSCA and provides newcomers with necessary

guidelines.

How the tool works. GMT is published as a Docker container. The image contains two web

applications for TOSCA type and template management as well as topology modeling.

Further, the backend is exposed as a RESTful HTTP API, which is used by its provided web

applications and can be used by external tools for integration purposes. GMT expects that

the Template Library is mounted as a directory into the container at runtime. This assumes

that either the RADON Particles (RADON’s public version of the Template Library) GitHub

repository is cloned locally or the content from the Template Publishing Service is exported

to a directory and respectively mounted into the container. GMT is designed and developed

loosely-coupled from the actual content that is used by users to model TOSCA application

deployments. The content is provided by the Template Library containing different TOSCA

entities, such as node types, policy types, requirement types, and even service templates. As

a result, users may extend the content of the Template Library to introduce new types and

entities for modeling. For this purpose, users may also use the GMT to create and define new

TOSCA types. The created content can be pushed to the RADON Template Publishing

Service or even pushed to the RADON Particles on GitHub.

A practical example. Start GMT either through the RADON IDE or as a standalone tool

following our user guide. The main entry point is the TOSCA Management UI, which can be

used to manage all of the TOSCA entities inside the current data repository. The data

https://winery.readthedocs.io/en/latest/user/getting-started.html

Page 23 of 65

repository, however, can be mounted into the container, e.g., based on RADON Particles, or,

in case of RADON IDE, the types and templates from the “radon-particles” project folder are

configured by default. From here, users may create new TOSCA node types or start to

develop a new deployable blueprint by creating a TOSCA service template. When creating

new TOSCA blueprints, the TOSCA Topology Modeler of GMT is used. Once the TOSCA

Topology Modeler UI is opened, it starts with an empty modeling canvas. Users can drag-

and-drop components from the palette on the left-hand side of the editor to the canvas to

model their intended application structure. For example, you can drag the “AwsPlatform”

entry to the canvas to create a new TOSCA node template of this type. In addition, you may

want to add an additional node template of type “AwsLambdaFunction”. By selecting a node,

users are able to edit the node’s properties in the edit. Further, the editor helps to create

relationships between nodes, e.g., to express that the Lambda function is hosted on the AWS

platform node. The “Requirements & Capabilities” view (activated by the top menu) lets users

drag from the “HostedOn” relationship entry of the requirement “host” to the “host” capability

of the “AwsPlatform” node to establish a relationship of this type between these nodes.

Lastly, the TOSCA Management UI of GMT is able to “Export” a TOSCA service template as

a CSAR file, either to download the CSAR or to save it to the filesystem (relative to the

configured repository path). The generated CSAR is self-contained and contains all type

definitions, implementation, and deployment artifacts to deploy the application by a TOSCA

orchestrator.

Page 24 of 65

Figure 3.1 - GMT example

Open challenges. GMT can currently only be operated based on a file-based data repository.

This means that either the RADON Particles need to be cloned locally or a respective

directory needs to be provided following the expected directory and file structure (see D4.4

RADON Models II) and mounted into the provided Docker container. Further, a future work

item for GMT is to provide support for TOSCA YAM imperative workflows. Currently GMT

only supports the creation of BPMN-based workflows and would require an extension to also

model deployment and management workflows based on the YAML syntax specified in the

standard.

Getting started. A detailed description of the Graphical Modeling Tool is provided in

deliverables D4.5 and D4.6. A user guide is also available online showing how to start GMT

in Docker (https://winery.readthedocs.io). Further information can be found at the Eclipse

Winery project site (https://projects.eclipse.org/projects/soa.winery) as well as in the

respective GitHub repository (https://github.com/eclipse/winery) since GMT has been

developed based on Eclipse Winery and all advancements have been merged back to the

official Eclipse repository.

https://winery.readthedocs.io/
https://projects.eclipse.org/projects/soa.winery
https://github.com/eclipse/winery

Page 25 of 65

3.3 Verification Tool

Overview. The primary purpose of the Verification Tool (VT) is to allow a user to check that

a given TOSCA model conforms to a set of functional and non-functional requirements,

expressed in the RADON Constraint Definition Language (CDL). In addition, its correction and

learning modes allow it to repair invalid TOSCA models and extend incomplete CDLs

specifications (respectively).

Business Purpose. One target market for the CDL and VT is cloud and Internet of Things

(IoT) providers. The CDL is predominantly aimed at Quality of Service (QoS) Engineers, who

define requirements as CDL specification, which can then be verified using the VT. Software

designers can use the VT to aid the design process, using it to suggest extensions and

corrections to the current architecture. A second potential target market is policy

management platforms. Software designers are able to use the CDL to define access control

policies, both manually and through machine learning, which can then be verified using the

VT.

How the tool works. The verification mode of the VT works by translating a CDL specification

and a RADON model into the language of answer set programming (ASP). The translation to

ASP ensures that the solutions of the resulting ASP program correspond exactly to the

inconsistencies between the CDL specification and the TOSCA model. An off the shelf ASP

solver is used to search for these ASP solutions, which are then post-processed and

displayed to the user. ASP solvers are used to solve a complete ASP program. The latter two

modes of the VT require extending/modify the ASP translation of a CDL specification and

TOSCA model (the correction mode requires the VT to modify or extend the part

corresponding to the TOSCA model and the learning mode requires the VT to extend the

part corresponding to the CDL specification). For this purpose, we use the ILASP system for

Inductive Learning of Answer Set Programs, which is capable of extending (and through

standard meta-level representations) modifying ASP programs.

A practical example. Start VT either through the RADON IDE or as a standalone tool

following our user guide. Download the service template and the simple set of constraints in

the CDL file main.cdl. The constraints state that if a lambda function accesses sensitive data

(where the nodes which contain sensitive data are given in the CDL specification), then it

should be hosted on the same AwsPlatform as the data. In this simple case, the constraints

mean that the resource components in the model have to be hosted on the same

AwsPlatform. ServerlessToDoListAPI has been implemented as such, so when we invoke the

https://radon-vt-documentation.readthedocs.io/
https://raw.githubusercontent.com/radon-h2020/RADON-Demonstrator/main/labs/servicetemplates/ServiceTemplate.tosca
https://github.com/radon-h2020/RADON-Demonstrator/blob/main/labs/servicetemplates/main.cdl

Page 26 of 65

verification test importing the service template of the created application, no consistencies

are found as expected. After importing this file into the IDE workspace, the VT can be invoked

choosing the option "Verify" by right clicking on the CDL file. The example returns that no

inconsistencies have been detected.

In order to put the VT to the test, we will slightly modify the topology model of the

ServerlessToDoListAPI hosting 1 of the 5 lambda functions (DeleteToDoItem) to a different region

than the rest of the components, resulting in the topology below.

Figure 3.2 - VT example

As we can see, the modified topology does not comply with the CDL specification

(AwsLambdaFunction_4 is stored on a different platform to AwsDynamoDBTable_0, and because

the table contains sensitive data and is accessed by the lambda, this is a violation of the

constraints). If we invoke the VT again (again by right-clicking on main.cdl and selecting the

"Verify" option), we will see the following output from the VT.

Page 27 of 65

Figure 3.3 - VT output

This prompts the modeler to make modifications accordingly to resolve the inconsistency

between the CDL specification and the model.

Open challenges. The main limitation of the VT is the lack of scalability of the latter two

modes with respect to the size of the search space for possible corrections and learned

constraints. Both of these modes depend on the ILASP system. Current versions of ILASP are

known to suffer from such scalability issues (although ILASP is being actively developed and

improved with the aim of overcoming such issues). Another recent system for learning

answer set programs called FastLAS is far more scalable, but current versions are less

general than ILASP and unable to solve the tasks required by the VT. In current work, we are

aiming to extend the FastLAS approach to full answer set programs, which could

automatically improve the scalability of the VT.

Getting started. A detailed description of the Verification Tool is provided in deliverables

D4.1 and D4.2. Information on getting started with the VT is available on Read The Docs

(https://radon-vt-documentation.readthedocs.io/en/latest/).

https://radon-vt-documentation.readthedocs.io/en/latest/

Page 28 of 65

3.4 Decomposition tool

Overview. The Decomposition Tool (DT) helps RADON users to find the optimal

decomposition solution for an application based on the microservices architectural style and

the serverless FaaS paradigm. It is typically used in four different scenarios: (i) architecture

decomposition, (ii) deployment optimization, (iii) accuracy enhancement.

Business Purpose.

The first purpose is to help software designers who want to decompose the architecture of

a monolithic application. The DT targets to generate a coarse-grained or fine-grained TOSCA

model from such application. The second purpose is to make it possible for operations

engineers to optimize the deployment of platform-independent or platform-specific TOSCA

models on a particular cloud platform. With DT, they can obtain the optimal deployment

scheme that minimizes the operating costs on the target cloud platform.The third purpose is

to help operations engineers to enhance the accuracy of the description according to runtime

monitoring data so that a better decomposition or optimization result may be achieved

afterwards.

How the tool works. The implementation of the decomposition tool is based on a chain of

tools and data structures illustrated in the following Figure 3.4. Given a RADON model, the

tool applies a built-in YAML processor to import the service template into MATLAB and

generates its topology graph and the embedded LQN automatically through model-to-model

transformation. As shown in the left figure, an optimization problem is then created from the

topology graph and solved by invoking the GA solver and the LINE engine. As shown in the

right figure, a decomposition problem is then created from the topology graph and solved by

invoking the Schema.org2 dataset and the DKPro tool. When the optimal solution or de

composition solution is found, the tool returns the result back to the original service template.

Page 29 of 65

Figure 3.4 - DT technical architecture

A practical example.

The Decomposition Tool is used within the RADON IDE to decompose the architecture of an

abstract RADON model and to optimize the deployment of a concrete RADON model. To get

started, you can clone the decomposition tool sample project in the workspace: 1.Press

Ctrl+Shift+P to open the command palette. 2.Select the Git:Clone command. 3.Type the

repository URL of the decomposition tool sample project. 4.Press Enter to clone the project

in the workspace. An example output showing the cost per year of running with the target

deployment option is shown below:

Figure 3.5 - DT output for optimization feature

The example project includes three folders, namely mono-app, micro-app and demo-app.

The mono-app and micro-app folders provide sample service templates, model.tosca, for an

Page 30 of 65

abstract monolithic and an abstract microservice application respectively. The demo-app

folder provides two sample service templates, open_model.tosca and closed_model.tosca,

for a concrete demo application (thumbnail generation).

To invoke the decomposition functionality of the DT, right-click on model.tosca in either the

mono-app or the micro-app folder and select the Decompose option. The execution of the

decomposition procedure will be displayed in the Output window (Ctrl+Shift+U to open). After

the decomposition procedure completes, the service template will be updated according to

the desired decomposition solution. An example of the tool output is given below.

Figure 3.6 - DT output for decomposition feature

Open challenges. To simplify architecture decomposition, the Decomposition Tool ignores

specific technologies in use and works on abstract RADON models, which are not

deployable. As for deployment optimization, the Decomposition Tool only supports a limited

range of AWS services at present. Further extension of this feature to other AWS services

and cloud platforms is desirable. Extra assumptions are also made in the optimization

program due to the inability of LQNs to capture the exact behavior of certain node types, for

example, cold start and retrial of Lambda functions.

Getting started. A detailed description of the Decomposition Tool is provided in deliverables

D3.2 and D3.3. Information on getting started with the DT is available on Read The Docs

(https://radon-ide.readthedocs.io/en/latest/).

Page 31 of 65

3.5 Defect Prediction Tool

Overview. The RADON IaC Defect Prediction Tool strives to tackle correctness in designing

applications based on serverless computing. In particular, it is designed to help DevOps

engineers to allocate effort and resources more efficiently during Quality Assurance activities

by prioritizing their inspection efforts for IaC scripts that might be failure-prone.

Business Purpose. The defect prediction tool is the first-of-its-kind tool to ensure the

software quality of infrastructure code (IaC) with the final aim of supporting its maintenance

and evolution. The tool consists of four individual components. The Github IaC Repositories

Collector collects active IaC repositories on GitHub. The Repository Scorer computes

repository metrics based on best engineering practices used to select relevant repositories.

The IaC Repository Miner mines failure-prone and neutral IaC scripts from a repository

together with a broad set of IaC-oriented metrics computed upon the collected IaC scripts to

predict their failure-proneness. The IaC Defect Predictor pre-processes the datasets and

trains the Machine Learning models. Given an unseen IaC script, this component classifies it

as failure-prone or neutral. Software Developers and Ops Engineers can rely on such models

to refactor Ansible and TOSCA blueprints to make them more comprehensible and

maintainable.

How the tool works. From a backend perspective, the tool uses Firebase to store failure-

prone data related to a repository and the built models. After the user has collected relevant

data through the RADON Defuse GUI (see link below), a model is automatically built for the

language and defect of choice. For the sake of performance and explainability, Decision Tree

is used to build the defect prediction models. However, new algorithms will be added soon

along with the possibility of tuning them. Once a model is created, the user can access it

through the GUI, see its performance and download it. The download .joblib file can be

integrated in a CI/CD pipeline or deployed online to be used by the plugin.

A practical example. The Defect prediction tool analyzes the characteristics of IaC blueprints

to predict their defect-proneness. Its models can be used within the RADON IDE, via a

dedicated plugin, or in Continuous Integration pipelines. The tool's output consists of TOSCA

and Ansible files metrics along with hints on the blueprints to investigate.

The models can be invoked within the plugin by performing "Run detection" on the csar final

of the final application to be deployed.

Page 32 of 65

Figure 3.7 - Defect prediction output

A new tab opens in the IDE workspace, showing a list with all the files suitable for the analysis.

For each file, the plugin provides a set of metrics by clicking on them, highlighting whether

each particular file is defective or not, and providing an interpretation of the prediction.

Open challenges. The tool currently supports only two IaC languages (i.e., Ansible and

TOSCA) and five kinds of defects. However, more languages and defects could be easily

integrated in the future. The defect prediction tool identifies defects at the file level. Future

implementation will target lower levels of granularities (e.g., feature level, line level).

Furthermore, because the tool relies on Firebase, the end-user must stick to the Firebase

billing plans. The current version is suitable for the main usage scenario and uses the

Firebase Spark plan, which offers generous limits for getting started with Firebase. Therefore,

it does not require the user to subscribe to any billing plan. In case the end-user wants to

increase the current quota and storage limits, she can subscribe to a paid-tier plan6 without

affecting the tool functioning.

6
 https://firebase.google.com/pricing

https://firebase.google.com/pricing

Page 33 of 65

Getting started. A detailed description of the Graphical Modeling Tool is provided in

deliverables D3.6 and D3.7. Below you can find the most relevant defect-prediction tool-

related repositories:

● RADON Defuse7, the commit annotator and model builder to assist developers and

operators to collect failure-prone data of infrastructure code, build, and evaluate

models through a graphical user interface.

● RADON Repository Collector8, a tool to crawl Github for IaC repositories.

● RADON Repository Miner9, a tool to mine IaC scripts contained in a repository.

● RADON Ansible Metrics10, a tool to extract source code metrics from Ansible

playbooks.

● RADON Tosca Metrics11, a tool to extract source code metrics from Tosca blueprints.

● RADON Defect Predictor Plugin12, the plugin integrated in Eclipse Che.

7
 https://github.com/radon-h2020/radon-defuse

8
 https://github.com/radon-h2020/radon-repositories-collector

9
 https://github.com/radon-h2020/radon-repository-miner

10
 https://github.com/radon-h2020/radon-ansible-metrics

11
 https://github.com/radon-h2020/radon-tosca-metrics

12
 https://github.com/radon-h2020/radon-defect-prediction-plugin

https://github.com/radon-h2020/radon-defuse
https://github.com/radon-h2020/radon-repositories-collector
https://github.com/radon-h2020/radon-repository-miner
https://github.com/radon-h2020/radon-ansible-metrics
https://github.com/radon-h2020/radon-tosca-metrics
https://github.com/radon-h2020/radon-defect-prediction-plugin

Page 34 of 65

3.6 Continuous Testing Tool

Overview. The Continuous Testing Tool (CTT) provides the functionality for defining,

generating, executing, and refining continuous tests of application functions, data pipelines,

and microservices and reporting test results. CTT integrates with other RADON tools and can

be used as a standalone tool.

Business Purpose. CTT enriches the TOSCA ecosystem by end-to-end support for

continuous testing of microservice-based, FaaS, and data pipeline applications in DevOps. It

is the first tool of its kind that supports the whole workflow — from test specification over

execution and reporting to automated updates based on production data — that is also

extensible to custom needs, e.g., integration of other types of tests or tools.

How the tool works. A user defines tests by adding them to a TOSCA service template for

the system under test (SUT) — most conveniently via GMT. Via the RADON Particles, CTT

provides tailored TOSCA node types, relationship types, and policy types for expressing

different types of tests and including suitable test drivers. For instance, CTT allows the

definition of a load test to be executed using a configured load driver such as JMeter. Also

the test infrastructure (TI) is defined as a TOSCA service template.

The deployment and execution of tests is managed by the CTT server. Via the REST-based

interface, users can execute the continuous testing on-demand via the RADON IDE or the

CTT command-line tool, or include it as a part of the CI/CD process. After being deployed by

a TOSCA orchestrator such as xOpera, the tests are executed and the test results are made

available to the user.

CTT is designed as an extensible framework that allows the definition of new test types,

metrics, and tools. CTT integrates with novel research approaches for DevOps-oriented load

testing in continuous software engineering.

A practical example. We will demonstrate the main steps of using CTT with an example. The

SUT is a FaaS-based implementation of a ToDo-list using AWS services, especially AWS-

Lambda functions. We will define an endpoint test that assesses whether the deployment

was successful.

We assume that a TOSCA model for the SUT exists. Within the model of the SUT, so-called

policies add the information about the tests that CTT will later execute. Figure 3.8 shows an

excerpt of a test policy (for a deployment test) assigned to the SUT in GMT.

Page 35 of 65

The RADON IDE is a possible interface to execute the tests via CTT. Figure 3.9 show a

workspace with the SUT and test-related artifacts, as well as the editor with a CTT

configuration to be defined.

The configured tests can be deployed and executed by selecting the respective option from

the configuration file’s context menu. CTT’s RADON IDE plugin communicates with the CTT

server.

Figure 3.8 - Deployment test configured in GMT

Figure 3.9 - SUT and test-related artifacts in the RADON IDE

Alternatively, for example in CI/CD pipelines, CTT can be triggered via a dedicated

command-line tool with a simple command like ./ctt_cli.py -u “http://localhost:18080/RadonCTT” -c ctt_config.yaml.

http://localhost:18080/RadonCTT

Page 36 of 65

In any case, the test results will be provided in the configured output folder for further

inspection.

Open challenges. Currently, CTT supports only a basic set of test types and test

infrastructures. However, CTT has been designed explicitly for custom extensions.

Getting started. A detailed description of the Continuous Testing Tool is provided in

deliverables D3.4 and D3.5. Step-by-step instructions are provided in CTT’s Read the Docs

page13. Various GitHub repositories provide the source code of CTT’s components and

examples; the starting point is CTT’s main repository.14

13

 https://continuous-testing-tool.readthedocs.io
14

 https://github.com/radon-h2020/radon-ctt/

https://continuous-testing-tool.readthedocs.io/
https://github.com/radon-h2020/radon-ctt/

Page 37 of 65

3.7 xOpera SaaS Orchestrator

Overview. xOpera SaaS is an advanced TOSCA orchestrator available as a service and built

on top of the xOpera orchestrator engine. The SaaS component provides an isolated xOpera

orchestrator environment to each deployment project, to which the owner can attach secrets

and share with other users. The ability to run as a service makes the deployment projects

available to teams of users. They can directly use or monitor the project through the GUI or

integrate xOpera SaaS using the API into their CI/CD workflow.

Business Purpose. The xOpera orchestrator aims to be a lightweight orchestrator compliant

with OASIS TOSCA and the current compliance level is with the TOSCA Simple Profile in

YAML v1.3. opera, the CLI tool, is a a (TOSCA) cloud orchestrator which enables

orchestration of automated tasks within cloud applications for different cloud providers such

as Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), OpenFaaS,

OpenStack and so on. The tool can also be used and integrated into other infrastructures in

order to orchestrate services or applications and therefore reduce the human factor. The

service oriented version, xOpera SaaS, includes advanced features such as secret

management, user, access and multi-tenancy management and receiving notification

callbacks.

How the tool works.

Using the browser version is straightforward. The basic workflow is simple, and includes that

you:

1. Have secrets you need to define prior to deployment.

2. Author a new workspace to contain your project.

3. Register your secrets to be available in the workspace.

4. Use the browser to create a new xOpera project from a CSAR.

5. Have to specify which service template and inputs you are using, then validate them.

6. In the end, deploy the project.

xOpera SaaS can also be used through a HTTP API.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

Page 38 of 65

A practical example.

The first thing we need to do is create whatever secrets are necessary for your deployment

to run. For example, these are your cloud provider secrets, SSH public keys, among others.

The way they are provided is through files - with each secret, you declare a file (and contents)

that will be present in your project when you create it.

Creating a workspace is simple, you just need to choose a name. You are assigned owner

privileges automatically, and you can share this workspace with other users, who can then

also create projects in it.

The next thing we need to do is to assign the secrets we created in the previous step to this

workspace. This is the only way they are applied to projects within this workspace. As with

sharing workspaces, this is done through the dropdown on the right of each workspace’s

row.

All that is left is to create and deploy a project. To do this, click the Add Project button, choose

a name and select your CSAR file.

Figure 3.10 - The main xOpera SaaS project management screen

To deploy the project, open the management window, input your service template filename

and upload your inputs file using the Browse button. You can Run validation on the service

template and inputs prior to deploying as a basic sanity check.

Page 39 of 65

Open challenges. xOpera project consists of multiple pieces that co-exist together. The core

engine used through a CLI or the HTTP API is open sourced and gives you the ability to

orchestrate any supported provider. However xOpera SaaS is currently proprietary software

that extends the possibilities to use the xOpera and extends the functionalities with OpenID

user management, secret management and more. In the future the orchestrator will be

supported and extended by the needs of the community and business clients.

Getting started. A detailed description of the use is described in D5.1 and D5.2 or in the

online documentation15 and project github pages16.

15

 https://xlab-si.github.io/xopera-docs/saas.html
16

 https://github.com/xlab-si/xopera-opera

https://xlab-si.github.io/xopera-docs/saas.html
https://github.com/xlab-si/xopera-opera

Page 40 of 65

3.8 Template Library

Overview. The Template Library is a place for storing, publishing, and sharing TOSCA

modules and blueprints. Users can manage their templates in their local storage, community

repositories, e.g., RADON particles on GitHub or in the Template Publishing Service (TPS).

As the management of the content in local folder or git repository is quite straight forward for

the GMT and RADON IDE, we focus here on the TPS, which provides the ability to search for

templates, filter them by different parameters, and download/publish TOSCA content.

Business Purpose. The main purpose of the Template Library is the management of the

TOSCA component and service templates. Currently, we are targeting two different scopes.

First is the community one, which can use the GitHub repository and Template Library

Publishing System, to develop, share and publish the templates. For the more advanced

users, we provided a special feature in TPS, where a user can privately share the content or

use xOpera SaaS orchestrator to directly create a project from a template published in TPS.

For easier search through the content the TPS has a web GUI interface.

How the tool works. Template Library is a standalone service and is exposed through a

RESTful HTTP API that comes with an OpenAPI specification and Swagger UI. The backend

is written in the KTOR Kotlin framework and can be set up in a Docker container. We use

Traefik reverse proxy to expose all services and Keycloak for IAM. On top of the API we have

a GUI, which was designed with PatternFly. The API enables users to publish templates and

then view them in the GUI. All these actions can be also initiated from the terminal with the

TPS CLI package that is available and versioned on PyPI. The API is also used by the TPS

RADON IDE plugin that offers invoking TPS actions such as publishing and downloading

TOSCA templates directly from Eclipse Che IDE.

A practical example. For the purposes of this booklet, we will present simple functionality of

TPS CLI and GUI. For other options please, visit our documentation pages.

The user first needs to install the TPS CLI from PyPI17 and then the setup command will guide

him through the process of configuring the necessary TPS API and IAM endpoints. After that

the user can initiate the template CLI command to view the available CLI actions for

templates. Templates can be uploaded with template save and downloaded with template

get command. The template create command generates all directories and files that are

needed to upload a Template library model. After generating a model (TOSCA template) or

17

 https://pypi.org/project/xopera-template-library/

https://pypi.org/project/xopera-template-library/

Page 41 of 65

a blueprint (TOSCA CSAR) user can add in his own code. He will be asked for the template's

name and (TOSCA) type such as capability, requirement, relationship, node, etc. To create

and upload a new template to the TPS, the user needs to provide a unique name of template,

template’s privacy and semantic version of the template. Here’s a simple example of the CLI

command:

save a private CSAR to Template library (with README)

$ xopera-template-library template save --name TestCSAR --path examples/csar -

-readme examples/README.md --version 0.0.1

Description of the template: Testing TPS CLI TOSCA CSAR upload

Template has been added successfully!

Version insertion was successful!

After uploading a new template, the user can preview and download the files from the CLI,

or even better, he can open the web browser and navigate to the public TPS GUI18, where

he will see a list of publicly available templates. These can be filtered to find the right one

and display all its versions and README and can be then downloaded with a single click.

Figure 3.11 - The main template library GUI screen with the list of stored templates

Open challenges. Currently the CLI version provides all features, while GUI and Eclipse Che

plugin still lack some functions, which will be extended and improved in the future.

Getting started. A detailed description of the use is described in D5.3 and D5.4 or in the

online documentation19.

18

 https://template-library-xopera.xlab.si/
19

 https://template-library-xopera.xlab.si/docs/

https://template-library-radon.xlab.si/docs/
https://template-library-radon.xlab.si/docs/

Page 42 of 65

3.9 Monitoring Tool

Overview. The Monitoring Tool (MT) provides all functionality for defining all necessary

infrastructure to monitor the efficiency and performance of the applications. In addition to

that, the Monitoring Tool triggers a mechanism that generates Grafana User personalized

dashboards and Alarm events based on defined Policies. The Monitoring Tool integrates with

other RADON tools (CTT, DT, Orchestrator), but can also be used as a standalone tool.

Business Purpose. Monitoring the runtime behavior of a serverless application implies that

either a cloud platform native monitoring service (AWS CloudWatch or GCP Cloud

monitoring) is used or a cloud platform agnostic solution is applied. The latter is promoted

based on the fact that the RADON framework relies on TOSCA to model FaaS

implementations on multiple cloud FaaS runtimes. It is built for DevOps engineers,

developers and IT managers.

How the tool works. The Monitoring tool is based on the Prometheus open source

monitoring framework and relies on the Prometheus PushGateway component that allows

ephemeral and batch jobs to expose their metrics on a Prometheus server. Moreover, the

collected metrics from FaaS instances are exposed as visualization dashboards on a Grafana

instance. A user can attach the Monitoring stack on a TOSCA service template and link it to

the FaaS instances that he/she wants to get monitoring insights on while runtime execution.

The linking is implemented through TOSCA relationships that targets the FaaS runtime

execution environment on both the AWS and the GCP platforms (monitoring TOSCA

relationships: awsIsMonitoredBy and gcpIsMonitoredBy). On every FaaS invocation the

metrics are pushed to the PushGateway component. The Prometheus server periodically

scrapes the PushGateway endpoint to gather any metric data.

Furthermore, the aforementioned TOSCA relationships can be used to set up the generation

of Alerts through the Grafana API whenever rules about metric-constraints are violated. The

alerts can be forwarded towards the xOpera SaaS. In combination with a policy defined on

TOSCA node level the generated alerts can be handled by xOpera to trigger resource scaling

actions.

In a cluster, the Monitoring tool can be used to monitor, alert and trigger the scale of

resources.

A practical example.

Page 43 of 65

The Monitoring Tool offers the capability to monitor serverless functions and obtain

monitoring metrics through the automatic creation of personalized, user-proprietary

Monitoring dashboards. This is feasible by the deployment of a Push Gateway node and the

definition of an AWSISMonitoredBy relationship, provided by the Monitoring tool.

Initially, the function code has to be injected with a code snippet through which the metrics

are pushed towards the Prometheus Push Gateway instance. Since the serverless function

is hosted on a nodeJS runtime environment, the code snippet is triggering a parallel worker

thread to push metrics parallel to the execution of the cloud function. Monitored metrics are

collected by PushGateway.

Finally through the defintion of the AWSISMonitoredBy relationship, user proprietary Grafana

dashboards are created and the monitoring metrics collected by the Prometheus

PushgateWay node are visualized towards the user.

Figure 3.12 - Generic service blueprint of the the Monitoring Tool on Serverless API

Open challenges.

The auto scaling functionality can be applied on AWS Lambda functions at the moment. More

FaaS runtimes can be supported (GCP/Azure Cloud Functions). Furthermore, the scaling

functionality can be extended to apply also on other node types such as Virtual machines

Page 44 of 65

(e.g. EC2 instances) Moreover, code injection is required if one wishes to handle the exposed

metrics in a fully automated way.

Getting started.

A detailed description of the Monitoring Tool is provided in deliverables D5.1 and D5.2.

Moreover, the Grafana Dashboards API can be located in the following github repo.

https://github.com/radon-h2020/radon-grafana-api-dashboards

Page 45 of 65

3.10 Function Hub

Overview. The Function Hub supports storing of versioned, ‘plug-and-play’ FaaS packages.

It has been designed as an integral part of Praqma’s use case, Cloudstash.io - a serverless

package manager. The function hub has been integrated with RADON through GMT at the

design phase.

When creating FaaS objects, the user can select any available URL from Function Hub. These

can be found by browsing the web app.

Business Purpose. Function Hub offers a secure space for organizations and individuals to

store and maintain their artifacts all aggregated in a versioned manner. Essentially, any actor

in need of managing and provisioning artifacts such as source code files, dependency

packages, etc is a potential user of Function Hub. The content is easily accessible and

shareable to any persons of interest providing access to multiple users across big

organizations, making sure to use the same versions uniformly. Further, making use of the

versioning system helps to keep the organization's codebase neat and robust.

How the tool works. Function Hub is an integral part of Cloudstash.io, a serverless package

manager. It offers a web application UI where the user can browse and interact with the

application's environment but also offers a PyPI CLI package with which the user can interact

with the application programmatically. The backend is exposed with a RESTful HTTP API

which can be accessed either from the web UI or the PyPI package for storing and accessing

reusable functions. The system offers free access to publicly uploaded functions but requires

user authentication to access privately stored data. Integration with RADON is taking place

in the modeling phase using GMT. There the user can use Function Hub URL annotations as

references to stored functions resulting in the creation of simple and lightweight TOSCA

service templates.

A practical example. Access the UI interface of the application in cloudstash.io and create a

user. Then create a repository and follow the instructions in the quick start guide that you

can find in the comprehensive documentation of the tool in https://functionhub-

cli.readthedocs.io/en/latest. After having successfully uploaded the artifact of your choice

using the pip package of Function Hub found in https://pypi.org/project/functionhub , you can

browse the UI and locate the files you have just uploaded in the repository of your choice. In

figure 3.13 you can see an example of an uploaded function named “create”. The description

panel of the function provides various information about the artifact, while the entry

“artifactID” can be used as a reference to that particular item.

https://functionhub-cli.readthedocs.io/en/latest
https://functionhub-cli.readthedocs.io/en/latest
https://pypi.org/project/functionhub

Page 46 of 65

Figure 3.14 depicts the artifact attachment window of a Lambda function where we use a

Function Hub URL as reference for the source code the Lambda function will execute. As

you can see the URL consists of a simple path containing the artifact ID and it triggers an API

call to locate and download the desired item.

Figure 3.13 - Detailed information on the “create” function

Figure 3.14 - Artifact attachment as Function Hub URL

Open challenges. Function Hub can currently be used using its authentication system that

adds another layer of user management to the RADON end-user. This could be avoided in

the future by integrating “keycloak” as a method of authentication for RADON users as they

Page 47 of 65

should already have an account there with their subscription to the IDE. A limitation that

Function Hub has so far is the allowance of uploading and hosting artifacts of maximum 10MB

in size. This is a decision that has been made so that the service is offered for free to users,

but a subscription-like schema could be set up in the future so that we offer the possibility of

storing bigger artifacts to individual users and enterprises.

Getting started. A detailed description of Function Hub, with its content and functionality is

found in deliverables D5.3 and D5.4. A user guide including a quick start can be found

athttps://functionhub-cli.readthedocs.io/en/latest while step-by-step tutorial can be found

athttps://github.com/radon-h2020/RADON-workshop/blob/main/labs/functionhub.md

A PyPI package is available at https://pypi.org/project/functionhub while issues and pull

requests can be requested straight from our Github repository at: https://github.com/radon-

h2020/radon-functionhub-client

https://functionhub-cli.readthedocs.io/en/latest
https://github.com/radon-h2020/RADON-workshop/blob/main/labs/functionhub.md
https://pypi.org/project/functionhub
https://github.com/radon-h2020/radon-functionhub-client
https://github.com/radon-h2020/radon-functionhub-client

Page 48 of 65

3.11 CI/CD Plugin

Overview. The CI/CD plugin integrated into the IDE provides all necessary connections and

functionality to enable CI/CD in the application development process. The plugin is available

for Jenkins, the RADON officially supported CI/CD platform but can be extended to other

platforms.

Business Purpose. Continuous Delivery is an essential part of RADON which is translated to

rapid, incremental changes to Serverless Applications. Doing so, demands a specific focus

on automation. For Continuous Integration, a user should be able to automate the necessary

tollgates for quality validation and branch integration, while for Continuous Deployment, a

user might want to automate the necessary release criterias and create a fail-safe

environment. Getting those two elements combined in a single project by enabling CI/CD in

a project, we can reduce lead time and bring value to the end user.

How the tool works. Technically, this is achieved by utilizing the full framework of Radon.

Within the framework you find all the necessary components for quality assurance,

deployment, testing and monitoring. Including these tools in a CI/CD pipeline will assure

automation and increase development velocity.

The CI/CD plugin that is integrated in the IDE triggers a pre-configured CI/CD job in the user’s

Jenkins environment and there, the selected RADON tools will be automatically executed in

a robust and secure environment ensuring that all new contributions deriving from the

application development team won’t break the system at the production deployment time.

Feedback will be provided back to the user in Jenkins so that potential issues can be further

investigated for troubleshooting, while a thorough history backup of the various builds will

provide confidence and roll-back possibility.

A practical example. To enable CI/CD a user should invoke a pre-configured Jenkins job

through the IDE plugin. To do so, must choose “Configure CI” on any CSAR file and after

providing all the necessary configuration in the YAML configuration file you can see in figure

3.15, the job can be triggered by choosing “Trigger CI” in the IDE contextual menu.

Page 49 of 65

.

Figure 3.15 - YAML CI configuration file

After that, a remote agent in Jenkins will perform all the specified jobs defined in the pre-

configured pipeline. Examples of pipelines for the RADON tools can be found in

https://github.com/radon-h2020/radon-cicd-templates. In Figure 3.16. you can see an

example of the sequential execution of the VT, the DPT, the CTT, the TL and finally the

deployment of an application with xOpera.

Figure 3.16 - Jenkins pipeline execution

Open challenges. The CI/CD system is fully customizable but currently the IDE supports only

invocation of CI/CD projects configured in the Jenkins environment.

https://github.com/radon-h2020/radon-cicd-templates

Page 50 of 65

Getting started. A detailed description of the CI/CD plugin is provided in deliverables D5.1

and D5.2. CI/CD templates20 for Jenkins and CircleCI and step-by-step tutorials21 can be

found online.

20

 https://github.com/radon-h2020/radon-cicd-templates

21

 https://github.com/radon-h2020/RADON-workshop/blob/main/labs/cicd.md

https://github.com/radon-h2020/radon-cicd-templates
https://github.com/radon-h2020/RADON-workshop/blob/main/labs/cicd.md

Page 51 of 65

3.12 Data Pipeline Plugin

Overview. TOSCA service blueprint with data pipeline-based nodes may need to be updated

at runtime to ensure consistency and may consist of various user-made errors (e.g., incorrect

relationships among the data pipeline nodes, erroneous configuration of nodes for

encryption). Therefore, we designed and developed the data pipeline plugin to allow users

to work with data pipeline-based TOSCA service blueprint.

Business Purpose. Designing data pipelines using Topology and Orchestration

Specification for Cloud Applications (TOSCA) standard language enables the ability to easily

compose data driven applications from independently deployable, schedulable and scalable

pipeline tasks, such as microservices, serverless functions or self-contained applications.

The aim is to provide standards based methodology and tools for controlling the life-cycle of

such composable data pipelines in a DevOps manner and to enable companies to move from

monolithic data management applications to freely reusable, composable, and scalable data

pipeline services.

How the tool works. This consortium has designed and developed a set of TOSCA based

pipeline node types available in radon particles repository. RADON data pipeline provides

an environment for building serverless data-intensive applications and handling data

movement between different clouds efficiently. The TOSCA based data pipeline service

template can be generated using the RADON Graphical Modelling Tool (GMT), Winery. The

service template developed using those data pipeline nodes is forwarded to the data

pipeline plugin, making sure that the user-designed service template is workable and the

pipelines can be deployed in the required cloud or local environment. The pipeline plugin

can be invoked through a command-line interface or a REST-based interface.

Upon receiving the service template in CSAR format, the data pipeline plugin unzips the

CSAR file and finds the service blueprint, which is in .tosca format. The plugin then parses

the .tosca file and understands the node topology, makes any changes/modification to the

.tosca file itself, if needed. For instance, the plugin will fix the wrong relationship types among

pipelines in the service template. After updating the templates, the plugin Zip all again and

create the CSAR file. The modified CSAR can now be passed to the RADON Orchestrator.

A practical example. The TOSCA based data pipeline service template can be generated

using the RADON Graphical Modelling Tool (GMT), Winery. You can follow this step to set up

RADON GMT. Follow our user guide to create a new service template. Open the Winery

window from the RADON IDE and click on the Service Templates manu. Create a new service

https://datapipeline-plugin.readthedocs.io/en/latest/#generating-pipeline-csar

Page 52 of 65

template by clicking on the Add New button. Now provide a suitable name and click on the

Add button. Here you can see the list of service templates. Now select and open the newly

created service template. Select and open the newly created service template. Select the

Topology Template menu item followed by the Open Editor button. In the Winery: topology

modeler window, find the suitable data pipeline TOSCA nodes, as shown in below figure.

Drag the required TOSCA nodes from the palette area, as shown in Figure 3.17(a), and set

the properties and make the connection with other pipeline nodes. The service template can

now be exported in CSAR format.

The exported CSAR now can be sent to the data pipeline plugin. To invoke the data pipeline

plugin with exported CSAR, right click on the csar and select “Convert CSAR with Data

pipeline plugin” option, as shown in Figure 3.17(b). The converted csar will be exported to the

same folder structure.

(a) (b)

Figure 3.17 - Designing and verifying TOSCA based data pipeline service template

Open challenges. RADON data pipeline is built atop one open source (Apache Nifi) and one

commercial data management solution (AWS DP) and currently there is no support for the

other open-source and commercial solutions.

Page 53 of 65

Getting started. A detailed description of the data pipeline plugin can be found in

deliverables D5.5 and D5.6. The detailed description of the data pipeline can be found here.

The GitHub repo for data pipeline plugin is available here. The developed TOSCA based

pipeline node types are available in radon particles repository. Additionally, one can refer to

the RADON workshop repo and the RADON data pipeline webinar for practical use cases.

https://datapipeline-plugin.readthedocs.io/en/latest/
https://github.com/radon-h2020/radon-datapipeline-plugin
https://github.com/radon-h2020/radon-particles
https://github.com/radon-h2020/RADON-workshop/blob/main/labs/datapipelines.md
https://github.com/chinmaya-dehury/radon-datapipeline-webinar

Page 54 of 65

4. Industrial Use Cases

4.1 Travel Technology

The problem.

The ATC use case refers to the travel and tourism industry, and it aims to provide a testbed

for validating the concepts and the tools that RADON is delivering to a number of

stakeholders being involved in the development of FaaS-enabled serverless computing

applications. This use case is based on the commercial offering of ATC in the travel and

tourism industry, which is called Viarota22, and it delivers a mobile application that assists

tourists in a destination to automatically or manually set up personalized city break tours and

runs algorithms in the backend for matching available places to visit with tourist preferences.

Eventually, the tourists get place descriptions and ratings, based on a workflow analysing

experiences for past visitors, in which the Viarota platform integrates the information

collected from various sources, such as travel blogs and social media, and uses AI to extract

experiences lived in specific places.

Whilst validating the benefits of the DevOps framework proposed by the RADON project,

ATC applied the principles of the RADON methodology to partially refactor the initial

monolithic architecture (containing potential bottlenecks) of the Viarota app. Also ATC

achieved to enhance the functionality of the app, by introducing a multi-cloud ML pipeline

related to providing qualitative information on the Points of Interest (POIs) included in a user’s

personalized tour planning. This type of information derives from content aggregated from

the Twitter API (focused crawling) and contextual mining on text coming from the Twitter

streams, allows the Viarota user to better understand the social sentiment around the places

he/she intends to visit. Finally, the hate speech detection FaaS component addressed the

need for moderation capabilities on the incoming content.

How RADON addresses it.

The RADON framework helped the Viarota application to modernize its architecture by

introducing an event-driven ML/AI data pipeline. The Viarota DevOps team managed to

model a cross cloud pipeline consisting of ML/AI functions hosted on different FaaS runtimes,

namely the AWS, GCP and Azure platforms.

22

 https://viarota.com

Page 55 of 65

The RADON framework supports the modelling of serverless components through the GMT

that exposes the various node definitions. The GMT allows to model not only the FaaS

components but also events linked to storage components. The model can be exported in

YAML format and can be executed by the TOSCA compliant runtime, the xOpera

orchestrator. The Viarota model is shown in Figure 4.2.

Figure 4.2 - Viarota model

The need to model, verify and if possible correct non functional requirements like the

instance type of the AWS EC2 machines used in the Viarota topology, is addressed by the

verification workflow. The ability to identify quality related inconsistencies at design time

contributes to the quality of the Viarota software. Moreover, by configuring a decomposition

policy the Viarota dev team is able to find the optimal deployment configuration for functions

that can be potential bottlenecks. The Decomposition tool suggestions refer to either the

FaaS memory settings or the concurrency level. Since the provisioned concurrency level is a

paid cloud resource it is important to configure a proper value so as to avoid excessive costs.

The data flows implemented in the social feedback analysis feature are integrated using the

Data Pipelines components. Specifically, a data link between an AWS S3 storage bucket and

a GCP cloud storage and another between a GCP cloud storage and an Azure blob storage

are modelled and implemented. Although the self scaling nature of the public cloud

serverless components makes the Viarota topology elastic and contributes to the total

performance, there is still the need for auto scaling capabilities. This is addressed in the

context of RADON by the joint execution of the Monitoring and the orchestrator tools. A scale

Page 56 of 65

up policy is configured to constantly monitor the functions memory consumption and when

a threshold is reached an event notification is sent to the orchestrator triggering a

redeployment with updated configuration.

Since the Viarota consumes events from social networks like Twitter, burst events are

expected to happen unexpectedly. The RADON framework offers a way to perform load

testing to simulate such an event and check how the Viarota topology behaves and how the

total performance/response time is affected. Finally, the CI/CD tool allows to automate the

execution of the various RADON tools as a build and orchestration template.

Lessons learned from using RADON.

The pay as you go pricing model that the public cloud environments offer seems quite

appealing in situations when you need to deliver a solution without managing the underlying

infrastructure, as it is the case in the Viarota application. Nevertheless, this implies that the

Varota dev team is familiar with the particularities and complexities of the public cloud FaaS

runtimes. The RADON framework fills this gap by hiding away most of the vendor specific

particularities, contributing this way in vendor lock in avoidance, simplified development

processes and increased Quality of product. Also, a common backend is shared among all

customers to provide for common Database and application components, whilst at the same

time functions in FaaS architecture are deployed to serve each customer’s specific

requirements and customer specific changes can be applied only to lambdas, leading to

reduced operating costs. Finally, Time-To-Market is significantly reduced in all types of

development whether new products are conceptualized and developed, or existing ideas

are upscaled to lead them to the market.

Page 57 of 65

4.2 Ambient Assisted Living

The problem.

Because of their event driven nature applications in the domain of IoT are indicated among

the ones that can greatly benefit from the adoption of the FaaS programming model. The

RADON Assisted Living use case aimed to evaluate the capacity of the RADON tools to deal

with development of a solution in the domain of Ambient Assisted Living and involving an

event-driven environment consisting of robotic and Internet-of-Things (IoT) devices.

SARA, this is the name of the solution, provides health monitoring and (socially interactive)

assistance in daily living tasks to the elderly (and their caregivers) at home, in order to prolong

autonomy and delay institutionalization of elderly. The SARA system is designed to provide

assistance to the elderly (and their caregivers) through Assistive Tasks (AT) falling in four

areas of intervention: physical decline prevention and therapy, cognitive decline prevention,

health management, and psychological needs.

In order to provide the aforementioned functionalities the SARA system coordinates the

following computing nodes: a Smart Phone that acts as hub of a Body Area Network (BAN)

of wearables (e.g. sensors and identification tags carried or worn on the patient’s person) for

fall detection, fall risk assessment and other mobility related data; a Robotic Rollator (RR)

providing physical support for the patient and offering patient monitoring and autonomous

navigation capabilities; a Robotic Assistant (RA) connected to a network of embedded

devices and services for monitoring the patient’s activities, health status and for supporting

the notification/reminder of upcoming treatments (e.g. medication, training schedules); a

Smart Environment Gateway acting as a hub of smart devices embedded in the local physical

environment in support of patient monitoring and rollator navigation functions.

The SARA solution is built on top of the ENG CloE-IoT platform, which aims to simplify the

integration of highly distributed, complex and robust IoT solutions exploiting computational

resources both in the cloud and at the edge. The CloE-IoT platform offers a set of

functionalities specifically targeting common IoT requirements allowing developers to focus

on their domain specific requirements.

The objective of the Assisted Living use case was the development of a FaaS-based

implementation of the SARA solution starting from an existing prototype built using a mix of

traditional and microservices approach. The FaaS-based implementation of S-SARA was

codenamed S-SARA. The target FaaS platform selected for hosting the SARA functions was

OpenFaaS.

Page 58 of 65

How RADON addresses it.

To achieve its objective the development of the use case proceeded through four major

phases:

i) Review of the existing design We started with the review of the existing design of SARA

and the identification of the functionalities suitable to be deployed as FaaS. Within this phase

the RADON Decomposition Tool served the process of identification of the operations to be

deployed as OpenFaaS functions in S-SARA/CloE-IoT. The process started with the

description of CloE-IoT as a monolithic service. We then used the Decomposition tool to

obtain a first decomposition in terms of microservices. This first decomposition was reviewed

by the designers of CloE-IoT. During a second phase each microservice confirmed by the

CloE-IoT designers was further decomposed into functions using again the Decomposition

tool.

ii) Function handlers coding In this phase we proceeded with the re-implementation of the

handlers connecting the selected FaaS infrastructure (OpenFaaS) with the pre-existing code

of SARA. This part was developed without the support of any RADON tool.

iii) Authoring and validation of RADON models. The RADON Graphical Modeling Tool (GMT)

served to create the TOSCA service template models of S-SARA and CloE-IoT. By means of

“point-and-click” graphical interaction supported by the GMT was possible to produce the

TOSCA models of both the serverless version of CloE-IoT services and S-SARA assistive

tasks. The creation of these models was achieved using an iterative approach starting with

the initial TOSCA models produced by means of the RADON Decomposition Tool (DT).

Figure 4.3 - Topology Template for the SARA Fall Management AT

Page 59 of 65

Using the RADON Constraints Description Language (CDL) it was possible to formalize the

SARA security and privacy requirements. This formalization enabled the use of the RADON

Verification Tool for the verification of the consistency of the requirements against the

TOSCA models of S-SARA. The RADON Defect Prediction Tool (DPT) was used to

continuously monitor the quality of the Ansible scripts developed to automate the

configuration of ROS (Robotic Operating System) services. In fact, the SARA solution relies

on the services offered by ROS for implementation of some of the functionalities provided by

the robotic components of SARA (i.e. the Robotic Rollator and the Robotic Assistant).

iv) Packaging and deployment. The description of the artifacts that need to be installed and

configured along with their dependencies were packaged in a collection of CSAR files

suitable to be processed by the RADON TOSCA Orchestrator (xOpera). The Continuous

Testing tool (CTT) was used for executing JMeter load tests of serverless versions of CloE-

IoT. For the definition of the JMeter Load test policies we reuse the test scripts (*jmx) already

developed for CloE-IoT.

Lessons learned from using RADON.

 The RADON Orchestrator reduced the operational costs of the S-SARA solution by means

of the automation of the deployment process enabled by. The GMT reduced the technical

implementation overhead in terms of both (a) simplified management of the execution

environment brought in by the adoption of the FaaS model and (b) reduced effort for the

development and maintenance of deployment bundles. The RADON Decomposition Tool

(DT) simplified the development process by avoiding starting from scratch the refactoring of

SARA in terms of serverless functions. The Verification tool (VT) improved the quality of S-

SARA verifying the consistency between the constraints and the S-SARA application

structure defined by means of the GMT. The DPT contributed to the overall quality of the

product as well by predicting possible defects within the Ansible scripts for the configuration

of the Robotic Operating Systems nodes.

Page 60 of 65

4.3 Artifact Management

The problem.

The EFI/PRQ UC refers to building and offering an artifact management system based on the

serverless technology. This artifact management system addresses complexity and reliability

issues by centralizing your artifacts in a single location. As a result the end-user gains more

control over your artifacts and how they are used, while the artifact repository itself acts as a

single source of truth and CI/CD integration point for your artifacts.

Existing players in the artifact management market tend to offer costly and unsustainable

packages especially for small and medium-sized enterprises and so EFI/PRQ sees clear

business opportunity offering a serverless, scalable and affordable solution.

Within RADON, the UC acts as a validation story of using RADON framework to entirely create

such an artifact manager from scratch. Focus has been given mostly to modeling and

orchestrating the application onto the cloud vendor rather than developing the logic of the

application as RADON’s offering strongly highlights the benefits of the framework from a

DevOps perspective.

The key factor to our product's success is the serverless nature of the application. Serverless

refers to an event-driven application design and deployment model that automates back-end

resource provisioning and enables developers to focus on the application development

rather than the hosting infrastructure. It provides various advantages over traditional server-

centric or cloud-based infrastructure.

The product offers developers with greater scalability, quick time to release, more flexibility

and all this at a reduced cost as the user pays only for the services used. A serverless function

is a programmatic function written by a software developer for a single purpose. It's then

hosted and maintained on infrastructure by cloud computing companies. These companies

take care of code maintenance and execution so that developers can deploy new code faster

and easier. In our UC we chose Amazon Web Services to host our application but in general

all cloud services providers offer similar functionalities.

Creating “Cloudstash” as a serverless application we can achieve building a self-maintained

and self-funded application with the possibility of scaling it up or down painlessly according

to demand.

Page 61 of 65

How RADON addresses it.

RADON’s most valuable asset is that the framework provides every tool and plugin a

developer would need to complete a robust and reliable development workflow following

DevOps practices.

For our UC development, a big advantage was the ability to model our application’s topology

graphically and export the orchestration templates automatically into YAML executable files.

That way it’s easier and more user-friendly to develop and maintain big and complex

topologies integrating multiple resource nodes. Combined with the orchestrator’s ability to

take care of the resources deployment and put the application into the runtime environment

effortlessly, it already delivers value to the development lifecycle. On top of those, RADON

framework offers a couple more tools that can add value to the development workflow

offering different functionalities. In EFI/PRQ UC we used plenty of them listed below:

● IDE - Integrated Development Environment

● GMT - Graphical modeling Tool

● CTT - Continuous Testing Tool

● VT - Verification Tool

● DPT - Defect Prediction Tool

● Function Hub - Functions repository

● xOpera - Orchestrator

● MonT - Monitoring Tool

● CI/CD - Continuous Integration/Continuous Deployment

All the above tools contributed to various aspects related to application quality, availability,

adaptability, and led us to the final version of Cloudstash’s model presented in Figure 4.4.

Page 62 of 65

Figure 4.4 - Cloudstash model

Lessons learned from using RADON.

RADON framework was used as the main development platform and brought significant

benefits to our development and operation processes. Acting as a single portal of

development we managed to broaden our horizons in QA, testing, and maintenance. We

realized the importance of having a common workspace for all development operations as

we spent less time exploring solutions but instead we used RADON's in-house offerings. All

together added up to a more simplified development process compared to our previous

practices.

Having chosen RADON to "go serverless" we saw clear benefit from operational costs

reduction for the development and the maintenance of our application. Even though there

will be charges for using RADON as a final product, a lot of operational expenses can be

saved using the RADON framework instead of subscribing to separate solutions. Moreover,

being a DevOps orientated framework encourages an incremental cycle of development and

significantly reduces technical implementation overhead. In our research to identify concrete

benefits compared to a similar tool in the market, we spotted improvements in time-to-market

as less time and effort was needed to build Cloudstash using the "RADON framework" rather

than using "Serverless framework" and additional testing tools.

Page 63 of 65

5. Conclusion

In this booklet, we have presented a summary of the RADON methodology and its

underpinning tools. A set of industrial use cases as well as focused examples of application

of the tools have been developed throughout. The interested reader can find additional

getting started information about the RADON framework in a walk-through demonstrator

available at:

https://github.com/radon-h2020/RADON-Demonstrator

A list of tools and detailed videos that illustrate the RADON methodology are available at the

following resource:

https://github.com/radon-h2020/radon-methodology

Acknowledgement

We gratefully acknowledge the European Commission under the Horizon 2020 Funding

Program for supporting this booklet under grant agreement H2020-ICT-2018-2-825040.

https://github.com/radon-h2020/RADON-Demonstrator
https://github.com/radon-h2020/radon-methodology

Page 64 of 65

References

[D1.2] RADON Consortium, Deliverable D1.2 - Period Report II, 2020

[D2.1] RADON Consortium, Deliverable D2.1 - Initial Requirements and Baselines, 2019

[D2.2] RADON Consortium, Deliverable D2.2 - Final Requirements, 2020.

[D2.4] RADON Consortium, Deliverable D2.4 - Architecture & Integration Plan II, 2020.

[D2.7] RADON Consortium, Deliverable D2.7 - Integrated Framework II, 2021.

[D3.1] RADON Consortium, Deliverable D3.1 - RADON methodology, 2021.

[D3.2] RADON Consortium, Deliverable D3.2 - Decomposition Tool I, 2019.

[D3.3] RADON Consortium, Deliverable D3.3 - Decomposition Tool II, 2020.

[D3.4] RADON Consortium, Deliverable D3.4 - Continuous Testing Tool I, 2020.

[D3.5] RADON Consortium, Deliverable D3.5 - Continuous Testing Tool II, 2021.

[D3.6] RADON Consortium, Deliverable D3.6 - Defect Prediction Tool I, 2020.

[D3.7] RADON Consortium, Deliverable D3.7 - Defect Prediction Tool II, 2021.

[D4.1] RADON Consortium, Deliverable D4.1 - Constraint Definition Language I, 2019.

[D4.2] RADON Consortium, Deliverable D4.2 - Constraint Definition Language II, 2020.

[D4.4] RADON Consortium, Deliverable D4.4 - RADON Models II, 2020.

[D4.5] RADON Consortium, Deliverable D4.6 - Graphical Modelling Tool I, 2019.

[D4.6] RADON Consortium, Deliverable D4.6 - Graphical Modelling Tool II, 2020.

[D5.1] RADON Consortium, Deliverable D5.1 - Runtime Environment I, 2019.

[D5.2] RADON Consortium, Deliverable D5.2 - Runtime Environment II, 2020.

[D5.3] RADON Consortium, Deliverable D5.3 - Technology Library I, 2020.

[D5.4] RADON Consortium, Deliverable D5.4 - Technology Library II, 2021.

[D5.5] RADON Consortium, Deliverable D5.5 - Data Pipeline Orchestration I, 2019.

[D5.6] RADON Consortium, Deliverable D5.6 - Data Pipeline Orchestration II, 2020.

[D6.5] RADON Consortium, Deliverable D6.5 - Final Assessment Report, 2021.

http://radon-h2020.eu/wp-content/uploads/2019/07/D2.1-Initial-requirements-and-baselines.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D2.2-Final-requirements.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D2.4-Architecture-and-integration-plan-II.pdf
http://radon-h2020.eu/wp-content/uploads/2020/01/D3.2-Decomposition-Tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D3.4-Continuous-testing-tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D3.6-Defect-prediction-tool-I.pdf
https://radon-h2020.eu/wp-content/uploads/2020/01/D4.1-Constraint-definition-language-I.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D4.4-RADON-Models-II.pdf
https://radon-h2020.eu/wp-content/uploads/2020/01/D4.5-Graphical-Modelling-Tools.pdf
https://radon-h2020.eu/wp-content/uploads/2020/01/D5.1-Runtime-Environment-1.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D5.3-Technology-Library.pdf
http://radon-h2020.eu/wp-content/uploads/2020/01/D5.5-Data-Pipeline-Orchestration-I.pdf

Page 65 of 65

[Baldini2017] Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell N, Muthusamy

V, Rabbah R, Slominski A, Suter P. Serverless computing: Current trends and open problems.

InResearch Advances in Cloud Computing 2017 (pp. 1-20). Springer, Singapore.

[Brinkkemper1996] Brinkkemper, S. (1996). Method engineering: engineering of information

systems development methods and tools. Information and software technology, 38(4), 275-

280.

[Eyk2017] Van Eyk E, Iosup A, Seif S, Thömmes M. The SPEC cloud group's research vision

on FaaS and serverless architectures. InProceedings of the 2nd International Workshop on

Serverless Computing 2017 Dec 11 (pp. 1-4).

[Hendrickson2016] Hendrickson S, Sturdevant S, Harter T, Venkataramani V, Arpaci-Dusseau

AC, Arpaci-Dusseau RH. Serverless computation with openlambda. In8th {USENIX} Workshop

on Hot Topics in Cloud Computing (HotCloud 16) 2016.

[McGrath2016] McGrath G, Short J, Ennis S, Judson B, Brenner P. Cloud event programming

paradigms: Applications and analysis. In2016 IEEE 9th International Conference on Cloud

Computing (CLOUD) 2016 Jun 27 (pp. 400-406). IEEE.

[Soldani2018] Soldani J, Tamburri DA, Van Den Heuvel WJ. The pains and gains of

microservices: A Systematic grey literature review. Journal of Systems and Software. 2018

Dec 1;146:215-32.

